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ABSTRACT

This report is concerned with the application of transformation groups
to the solution of systems of ordinary differential equations and, in particu-
lar, partial differential equations., These groups are Lie groups in the usual
sense, but it is the transformation properties rather than the group structure
that is used.

The principal tool used here, referred to as Lie's theorem, gives a
method for finding an integrating factor for a system of ordinary differential
equations when the appropriate invariance group or groups can be found. Lie's
theorem is extended to partial differential equations by considering a partial
differential equation as a continuously infinite system of coupled ordinary
differential equations. For a system of ordinary differential equations the
integrating factor is a matrix. For a partial differential equation the inte-
grating factor is a continuously infinite matrix.

The proof of Lie's theorem and its use for partial differential equations
depends on constructing an adequate theory of continuously infinite matrices;

this is done here through the use of distributions or generalized functions.
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I. INTRODUCTION

This report is concerned with the application of transformation groups to
the solution of systems of ordinary differential equations and in particular
partial differential equations. These groups are Lie groups in the usual
sense, but it is the transformation properties rather than the group structure
that is used.

The principal theorem, referred to as Lie's theorem, gives a method for
finding an integrating factor for a system of ordinary differential equations
when the appropriate invariance group or groups can be found. Lie's theorem
can be extended to partial differential equations by considering a partial
differential equation as a continuously infinite system of coupled ordinary
differential equations. For a system of ordinary differential equations the
integrating factor is matrix. For a partial differential equation the inte-
grating factor is then a continuously infinite matrix.

The proof of Lie's theorem and its use for partial differential equations
depends on having an adequate theory of continuously infinite matrices; this is
done here through the use of distributions or generalized functions.

Chapter II treats systems of ordinary differential equations. Lie's
theorem is derived in such a way that it can be readily applied to the discrete
approximation of a partial differential equation. Examples given are the
discrete approximation to the heat flow and wave equations considered as initial
value problems, and it is shown that the limiting form of the solutions obtained
are those given by other more familiar techniques.

In Chapter III Lie's theorem is derived for and applied directly to par-
tial differential equations without the necessity of using a discrete approxi-

mation. The heat flow equation is again used as an example.



While the examples given are linear equations, there is nothing in the
method that restricts it to linear problems. Lie's theorem can in principle
be applied to non-linear partial differential equations, but in practice it
has been difficult to find a non-linear example.

Chapters II and III are oriented towards the engineer, physicist or
chemist whose prime interest is application and the practical'solution of
problems. The proofs or derivations here would not be considered satis-
factory by standards of the mathematics of this century.

In the Appendix, however, an effort was made to achieve rigor in the
proofs given. It is here that the foundations of a theory of continuously
infinite matrices based on distribution theory and generalized functions[ 29-
33] is given.

It will be noted that the notation of Chapters II and III and of the
Appendix are not always consistent with each other. Where differences occur
it is usually due to an effort to maintain a notation consistent with that
of the reference from which the material was obtained.

While we have not been able to find in the literature Lie's theorem for
partial differential equations (or even for systems of ordinary differential

equations), it seems unlikely that the work here is completely new.

Notation

The notation used in connection with matrices in Chapter II is as follows:
A doubly indexed quantity will be called a matrix. If Aij are the elements of

a matrix, then the matrix is referred to as A. Singly indexed quantities will

be called vectors so that Bi are the elements of the vector called B. The

transpose of A and B will be denoted AT and BT respectively. The inverse of A

I
is AI and its elements written as A, ,.

ij




The summation convention will be used so that any repeated index is
understood to be summed unless stated otherwise. For example, if A and C
are matrices, the product AC will be written as Aimij' The index m is
understood to be summed., The product ATC is written as Amiij, etc, These
sums run over the entire range for which the index is defined,

To shorten notation when partial derivatives are used, the comma nota-

. . . 3¢ a1t
tion will be used. That is S% (x,t) and gﬁ (x,t) will be written as ¢,t and

¢, respectively. If a quantity is a function of a set of indexed variables,
x

for example

Y(yl’y2>}73, . . ') = Y(Y)’ then
its partial derivatives %% will be written as Y,k. For example
k

+Q,, 3,

QU (®), v,(0), « ., 0= Q + Q¥

where

In the chapter dealing with the application of continuously infinite
matrices to the solution of partial differential equations, the notation can
become quite complex and under some circumstances ambiguous. Some of the
conventions and notations used there will be described as follows.

The partial derivative will have its usual meaning. That is, if ¢ =

¢(x,t,z) for example, then



3¢ _ 42 2¢ _ dg
ax  dx and at  dt
t = constant X = constant
2z = constant z = constant.
If z happens to be a function of x and t, that is z = z(x,t) then
¢ = ¢(X,t,Z(X,t)) = Y(X,t) and

oY _ 98 , 98 2z oY _ 98 , 99 2z
ax ox T3z ax BT T3tz ot (x,t).

The comma notation will also be used for the partial derivatives, i.e.

¢’t - at 3 ¢sx - ax s and

=2
f’j - ay. f(YI’y2’y3 « & e )'

]
Where this will cause no confusion, the prime and dot notation will also be

used for partial or total derivatives with respect to x and t respectively.

That is

> 52 o 22
5o o, y=2L, vy = Z @,y =, et
dt * ox

A functional notation will also be used. Parentheses will be used to
indicate parameters of functions or distributions and square brackets indicate

functional parameters. Thus ¢ (x)[y] = ¢ (x,2z) with

+w - - -
Z = I f(X,Y(X),Y',Y" ¢ o e )dx’

-0




where f is some function of the indicated parameters. That is, ¢ can be
regarded as a function (or distribution) in the variable x and as a functional
in the quantity y.

; The variational derivative* will indicate a derivative with respect to a

. functional parameter. That is
4
- QQ(X)[Y] - QQ _5__ - > o -
5y (s) = 3z (x,2) | * By (s) _mf(x,y(X),y ¥, .. )dx
4@ - - -
z= ff(X,Y(X),Y', . .)dx
-0
and
5 te - a3 - 5y () .-
— t = ——— t
6y(s) LE(XSY(X)’Y b} . . ')dx - :.j‘m a 0 f(X,ZO,y b . . -) _ . 6y(s) dX
zy =Y (%)
+°°a 8 [ !
- > z 8 y'(x)dx
+:[Dazl E(X,y(X),2y+ « .+ ) RGeS
2z, = ¥'(®)

+ etc.

and
BY(X) = sz . o Sy () _ dE(2)
sy(s) - 078 55(s) az ’

*
Frechét derivative



& y'(x) -4
57 (s) dzz 6 (z) s etc.
z=X -8
so that
k
QQ(X)[YJ _ §Q (x,2) ' Fé_ QE(S,Z 2Z23Zn3 o o o)
8y (s) T Qz ' Z \d azk 0* 172
Ofk
4o m
z = ‘r fdx zZ = d y(s)
-C0 m dSm

Here &6 (x) is the Dirac delta distribution or generalized function. The pa-
rentheses designate either function or distribution parameters; no distinction
between function or distribution parameters will be made. However, it is under-
stood that in any integration associated with a matrix multiplication, one of
the occurrences of the variable is a distribution and the other a fairly good
function (in the sense of Lighthill [29]).

Distributions, the general theory of continuously infinite matrices,
definitions, and theorems associated with these topics are given in the
appendices, It should be noted that a functional parameter can also be a func-
tion (or distribution) in some variable. In that case, account must be taken

in expressing the total and partial derivatives. Thus if

¢ = e(t)ly] = o(t,2)

4o
z = I E(x,y(x,8) 5,y (x,t),y"(x,t) . . .)dx

then




TE ot and
4o
z = j £ dx
-0
4
38 | 3 8(t,2) 4 ,
ot + oz * dt Lf(x:}'(xat),y (x:t); . s . )dx
4o
z= [ fdx
-CO

by (x,t) ot

2 7 L ay] oy (k0
ot 4



I1. LIE'S THEOREM FOR A FINITE SYSTEM
OF ORDINARY DIFFERENTIAL EQUATIONS
Lie developed the theory of one parameter continuous transformation
groups for the purpose of studying ordinary differential equations [1]. This
technique has become a standard tool for the solution of first order ordinary
differential equations and is derived and discussed in most text books on the
subject [2-4]. For some reason, not too apparent, the extension of Lie's
theorem to systems of first order differential equations seems to have been
neglected. This extension is made in the first report on this contract [26]
where Lie's theorem is proved for systems of equations and examples given.
The proofs will be repeated here in this report in a slightly altered form,
one that is more easily extended to partial differential equations and more
examples given. However, we will not repeat here many of the definitions and
elementary concepts of group and transformation theory discussed in the first
report but will refer the reader to this report [26] or to the standard text

books on these subjects.

A. Lie's Theorem for Systems of Ordinary Differential Equations

Consider the system of M (total) differential equations in M + 1 variables

POy« o N O dy + Qs ¥y - 0 oy DdE= 0, (11-1)

j=1, 2, . ..M. The summation convention for repeated indexes is used here.
Let ¢j (yl, Yos o v o Yy t) = ¢ (constants) j =1, 2, . . . M, be a family of

solutions to II-1, That is




= o _ -
¢j,k = ayk inPik (11-2a)
*
¢J’t Tt >\JlQl (11-2b)

where the hji may be functions of the y and t but are independent of the index
k. X is called an integrating factor and is an M by M matrix, Thus if an

integration factor exists that satisfies II-2, each ¢j must satisfy the partial

differential equation

I
¢j,kP kiQi - ¢j,t = O 2 (11-3 )

where PIki is the k,i element of the inverse of the matrix P provided PI exists.

Assume that the ¢j = cj are invariant as a family under the groups Un’ n

d 9o
'Un - Cl’nk(yl’yZ’ ot yM’t) ayk + Bn(yl’y2’ e yM’t) ot

that is

Ug. =g_.() (11-4 )

forn=1,2, .. .M, and j=1, 2, . . . M, where the gnj are some functions

of the ¢'s. Introduce és defined as

s.= Ja',, @ w0, (11-5 )



so that @S = CS is identical with the family, ¢, = cj. The notation here is

I . .
that g ig is the i, s component of the inverse of the matrix g(@), assuming

that this inverse exists., The right hand side of II-5 is meant to indicate a

line integral in ¢ space, i. e.

?y
1 _ I
Ig is d¢i =g 8 lS(w,Rz,R3, e « .« )dw
1
@ o)
2 I 3 I
+ g 2s (¢1,W’R3:Rh, e e oo )dw + g s (¢1’¢2’W’RL}’ .« o o )dw
R R
2 3
+ etc.,
so that
BQS 1
a¢i is
Here the Ri are arbitrary constants.
Then
0% I
= = = 11-6
Umés B Um?i —=2= By B g 6ms ’ (11-6)
o9,
i
where 6ms - 11ifm= s or 0 if m # s. It is also seen that the és obey the

same partial differential equation II-4 as do the ¢i, that is

I
) _ 1I-7
L (11-7)

10




Equation II-6 and II-7 can be combined to solve for @S

terms P, Q, o and B giving

and

k and Qs,t in

(11-8a)

(II-8b)

. T . .
Here the notation (Po™ + QBT)Isi refers to the s, i component of the inverse of

the sum of the matrix products P with the transpose of o and Q with the trans-

. T | .
pose of B, provided this inverse exists. (Note that QB is a square matrix).

From equation II-7 it is seen that under the assumptions made, an inte-

. . . T
gration factor or matrix exists of the form (Pu

+ QBT)I, and matrix multiplica-

tion with equation II-1 gives a perfect differential in the sense that

o¢ 1)

S s dt T T
d@s = ayk dyk + 3t = (Pa” + QB

1 .

+ @’ + @D q, .

J J

The function & can be found by a line integral in the y, t space along

some convenient path, represented by

d = fd@
s s sj

j(PaT + et | P 4yt I(PaT + QBT)ISj Q. dt

J

(11-9 )

where the Ks are constants. The equations és(yl,yz, e o .y t) = KS represent

then the general solution to the set of equations II-1.

11



There are two points to be noted in connection with this result. The
first is that instead of the matrix equation P %% + Q= 0, it would be just
. dy | = = 1 .
as general to have used the equation at + Q= 0, where Q = P7 Q since a
necessary and sufficient condition for the existence of a solution to the first
. I
is that P exist.

The second point to note is that there is no need to consider transforma-

tions of the variable t. That is the transformation

+
te~t eBn

is exactly the same transformation (as far as the equation dy/dt + Q(y,t) = O

is concerned) as the transformation

ykf-yk (t - eBn) since

- ~ I AP
yk(t eBn) m,yk(t) €3t Bn = Yy + erBn .
Thus the transformations

3 o)
Un = %k ayk + Bn ot

are identical to the transformations

I

U, = (ank + kan)ayk

n

with respect to the equation dy/dt + Q = 0.

12




The remainder of this chapter will be concerned with the equation
dy/dt + Q = 0 and transformation y ~ y + ex only.
A formal statement of the theorem used in this report for the solution of

differential equations, which we will refer to as Lie's Theorem, then, is as

follows:

dy (t)

"If the differential equation P

+ Q(y(t), t) = 0, where y and Q are
vectors, and t a scalar, is invariantwith respect to the set of transformations

specified by
_ 3
u - ans(y’t)ays

, . . TI .
where @ is a square matrix and 5; a vector operator, then provided o exist,

the general solution to the differential equation is

.ﬁyTI(dy +Qdt) = K

where the integral is understood as a line integral in y, t space along any
convenient path, and K is an arbitrary vector constant."

The paragraphs in this chapter leading up to a statement of this theorem
can, in fact, be considered a proof of the theorem, but an alternate form of
the proof will now be given.

The differential equation to be integrated is

E+ay,0 =0 . (11-10)

If this equation is to be invariant with respect to the transformation specified

by

13



u_ = 9

a - Y S;; (1II-11)

for all n it must be invariant with respect to the infinitesimal transformations

(11-12)

to first order in ¢ for all k and n. Here ¢ is an infinitesimal parameter.

Making this transformation gives

dy
k d 2 _ _
T +Qk+€{_dtoznk+oz Qk, }»+e(. ..)=0 (I1-13)

This equation is invariant up to first order in ¢ if an only if

& o, 0,0 = - Q (11-14)

,m

Letting ain = o and aTI be the inverse of aT, I1-14 gives

T d TI

akn EZ ans - Qk,s (11-15)

TI
The left side of this equation is the right Volterra derivative* of o .

It will now be shown that every solution to II-15 is an integrating factor

of II-10. Let ka be an integrating factor of II-10 for each k; that is

*
MacDuffie, C. C., The Theory of Matrices, Chelsea Publishing Co., New York,
(1946) page 103.

14




d@k = ka dym + Akm Qm dt

where d¢k is a perfect differential for each k.

Then

ka - ¢k,m and

Mm% T P
Thus ¢k is a solution of the partial differential equation
=0 . (1II-16)

¢k,t: B Qm ¢k,m

Differentiating (II-16) with respect to Yo gives the partial differential

equation for A,

xks,t } Qm Kks,m - ka Qm,s

or

13, 2|, .
Kkn 3t Qm aym Kns - Qk,s .

The operator in square brackets is the total derivative with respect to

t, so that A satisfies the equation

I d

Men dt “ns = Qk,s ) (I1-17)
Now if C is an invertible constant matrix, then
I I d
kn Cnp dt (Cpq qu) - Qk,s and

15



RN

b

C A
P9 gs
so that C) is both an integrating factor and a solution to II-17 for every

invertible constant C.

Suppose two invertible matrices R(t) and S(t) have equal Volterra

derivatives, that is

Then

Id d I
R dtR+(dts)s=0,

provided 4 SI exists. Multiplying on the left by R and on the right by SI

dt
gives
dR SI + §Q§£ = 0 or
dt dt  ~
d 1
ar RS ) =0
Then
RSI = C

where C is some invertible constant matrix. That is, if two matrices have
the same Volterra derivative, they are proportional to each other through

some invertible constant matrix.

16




In this way it is shown that every solution of II-17 (or II-15a) is
proportional to every other solution through some invertible constant matrix.
Thus if some solution is an integrating factor, every solution is an integra-

. . TI
ting factor. The matrix o “(y(t),t) is then an integrating factor of the

matrix equation
d
E_Yt-(t) + Q(Y)t) =0

Then since

¢ 10

m m _TI _
W= Ty Wi e 4= o (yy 4 Qg ), (11-18)

the line integral in y, t space
¢ = aT¥(dy.v+ Q. dt) = K (I1-19)
mj J- 73 m

is a solution to the system of differential equations II-10 for each constant
vector K. That is, the Km are the constants of integration.

This completes the proof of Lie's theorem for systems of differential
equations, the basic theorem on which the methods and results of this report
are based.

We note at this point that the Lie's theorem is proved here for a finite
system of equations. The extension to countably infinite systems depends on an
adequate theory of countably infinite matrices. The proof would be unchanged
for a system of countably infinite matrices that form an algebra, that is, a

*
system which is closed under addition and multiplicatiom., The extension to

"C. C. MacDuffie (op. cit.) page 106.

17



continuously infinite matrices which forms the basis of the application to

partial differential equations will be discussed in a later chapter.

B. Examples

1. The One-Dimensional Heat Flow Equation

As an example of the use of Lie's theorem to solve systems of ordinary

differential equations, the method will be applied to the discrete form of the

one-dimensional heat flow equation.

Consider the partial differential equation

2
%%(X,t) _ 9 y(x,t) = 0 , (I1-20)

axz
with initial conditions
y(x,0) = y°(x)
and the periodic boundary conditions
y(x + 2L,t) = y(x,t) .

Using the lowest order difference approximation for the derivative with respect
to x gives the system of equations

dy (&) _Ynb1 ~ Pnt Yng

dt h2

=0 n=0, £, 2 . N (1I-21)

Here yn(t) = y(nh,t) where h is the discretization interval (Nh = L). There are

only 2N independent equations since yn(t) =y (t) by virtue of the periodic

n + 2N

18




boundary conditions. The initial conditions are

yn(O) =¥, -

Considered as a system of coupled differential equations, II-21 is of the

form
d .
w It .t =0
where
Q(7,8) = =G4y - 2y +y__)/n
n*’? n+1 n n-1
Equation II-21 is invariant with respect to the transformation
vy, (£) =y (&) + €yj+n(t)
for n= 0, #1, . . N and j = 0, #1, #2, . . N. The operators characterizing

the set of transformation are

U, =1y

<~ j = + . . - -
j j+s 3y, j=0, 1, N

This is of the form

with

o is a square 2N by 2N matrix.

19



The matrix «, whose elements are yj+s’ is called an anticirculant matrix.
Much is known about anticirculants. 1In particular, the inverse of an anticircu-

lant is an anticirculant, if it exists. It is straightforward to show that if

T

Ay TC the elements of the inverse of the matrix whose elements are ynﬁj(zajm

= o .), so that
mj

TI T s
mk ¥im T Ymrk Tmry T Ok

then

1 eniks/N

% = 2N “mijs/N
e v,

J
(Note here that the summation convention is used on all repeated indices, the
sums running from -N+1 to N, and % is periodic with period 2N.) This inverse
can be obtained in a variety of ways. It can be obtained from the theory of
finite Fourier expansions. Also, by showing that powers of the Nth roots of
unity form a unitary matrix that diagonalizes every N by N anticirculant,
this inverse can be obtained from the reciprocal of the eigenvalues of ynﬂj'

With this inverse, then, the integration factor is

T1 eni(k+m)s/N
[0 :q =

mk mtk ~ 2N mijs/N
€ y

3
There exist, then, perfect differentials, d@m

d@m = Qm,k dyk + Qm,tdt

20




such that

0, I 0P B
ayk T "mk ’ 3t T “mk ‘k
TI 2 2
“mt = Ok Okar T Wty )/t = -6y - 28 g+ 8 )/h

The functions @m(Y_N+1, Yont2re ¢ Yoo o Yy t) can then be calculated by
integrating d@m along some convenient path in the 2N + 1 dimensional space of

the y's and t. A convenient path of integration is as follows:

(1) Yie 6k0 along t from t = 0 to t

it

(2) t=1¢t,vy 0k # 0) along y fromy =1 toy (t)
k o o o

(3) t=t,

i

Ok #0,1) y =y (t), along y, fromy, = 0 to y. (t)
o o 1 1 1

(4 t=t,y =0k #0,1,-1) y, =y (8, y; =y (t), along y_, from
y.q4= 0 to y_l(t)

etc. Written out with the summation signs, this is

2

t
- jodt(éml -26_ 46 )/h

o r v, eni(0+m)s/N
+ = dw ; :
2N 1 mijs/N mi0s/N
-N4%%N 1 0<§<1 e yj + e W
J'yl eﬂi(l-l-m) s/N
+ dw - :
0 v mijs/N v, + enlls/Nw

-1<5<1 © ]

21



i(-1+m
+ j'y'l dw Sl . ekl
0 mijs/N + eni(-l)s/Nw
-1<j<2 ]
+ .
N ny i en1(N+m)s/N } .
0 enijs/N + eniNs/NW
-N<j<N j
This particular path of integration gives
mims/N mijs/N
- & ln(e v _ b - N
e (y,t) = of Iy (-2 o+0 ). (11-22)

That this is in fact Qm(y,t) can be readily verified by calculating that

TI
Qm,k = and
8 = -6, =26 46 )/n
m,t ml m0 m-1 :

A completely general solution to equation 1I-21 is given by Qm = Km where the
Km are arbitrary constants.

While this solution does not look particularly useful, it can be solved
explicitly for the yj by introducing new integration constants MS where 1n MS
-17ims/N
e

K .
m

Then taking (discrete) Fourier transforms of both sides of

mims/N d: mijs/N )
e In e y -t - -
2N j h2 (éml 26m0 + 6m-l) =K

22




gives

1n(eﬁle/N yj) + 4t sinz(ﬂs/ZN)/h2 = 1n MS , or
., , 2 2
e (-mijs/N - 4t sin“(11s/2N)/h )M
yj(t) = 9N s

The constants M_ can then be related to initial conditions by noting that at

t
i
o

1 e‘ﬁlJS/N v

Yj(o) = N S or
M - eTTlmS/N v .
s
In terms of the initial conditions then, the solution to II-21 is
. , 2 2
e—ln(n-m)s/N e-4t sin" (rns/2N)/h”
y () = 5% Im (11-23)

(Note the sum over both the repeated indices m and s.)

While this solution to the one-dimensional heat flow equation may not
look familiar, by passing to the limits h - 0, N = ® with Nh = L it can be seen
that this is the usual solution for the initial value problem.

Introducing the notation

X = nh,
n
x' = mh
m
Ax' = h,
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and writing out the summation signs explicitly,

T e a2 2
o 2n1(Xh X m)s/2L o 4t sin“(ns/2N)/h ve

v(x,t) = lim S oax' m
N—e -N%%SN -Néégm 2Nh
0
(Nh=L)

o e-2ni(x - x'")s/2L e-AC(ﬂS/ZL)i(X',O)
J 2L Ly '

F

If the limit L = < is now taken one obtains the solution to the heat flow

equation valid over the entire real axis for the initial value problem. Intro-

the notation
Py = s/2L , Ap = 1/2L

gives

+L - ot _ 2
lim I dx! 31 bp e 2mi(x-x)pg - At(mp) y(x',0)
Lo -L oo{'s's_oo
(4p—0)
4oo oo e 2
S [ ekt [ oap o FMEGexDR - M)t ),
-0 -0

This is the usual Fourier transform solution for the infinite interval. The
integration over p can be carried out and gives
1\ 2
4o e-(x-x Y4/t
yGe,t) = [ dx! Y3 y(x',0). (11-24)

-0

This is the standard solution to the initial value problem for the infinite

interval.
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1.1 Discussion

The above technique for using Lie's theorem to solve the heat flow
equation is quite complicated and gives well-known solutions that are much
more easily obtained in other ways. It is used here only to illustrate this
method. The equation II-20 is linear, but Lie's theorem can be applied to
the non-linear problems. The technique of discretization of the partial
differential equation, followed by the application of Lie's theorem to a
finite system of ordinary differential equations, followed in turn by taking
the limit back to the continuous system, can be applied to other partial
differential equations but is an extremely awkward way of proceeding. A more
desirable method would be to obtain a form of Lie's theorem applicable directly

to partial differential equations without introducing the discrete approxima-

tion. This subject will be taken up in later chapters of this report.

2. The Wave Equation

The second example given here will be the application to a second
order partial differential equation, the wave equation
2 2

a_z y(x,t) - §—2 y(x,t) = 0 , (11-25)
ot ox

with initial values y(x,0) = y°(x) and %E y(x’t)lt - 0" y°(x)

Since Lie's theorem is applicable to first order differential equations, it
will be necessary to reduce II-25 to a pair of first order differential equa-
tions. This can be done by introducing two new variables y and y' defined as

y = %% (x,t), y' = %ﬁ (x,t). Then the single second order partial differential
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equation II-25 can be written as a pair of first order coupled differential

equations

This pair of coupled equations can be

defining

which satisfy the equations

<
i
e
1
<

du _ du

ot ax 0
oV . oV _

ot + dx 0.

The solution of 1I1-25 is related to the solution of I1I-27 by

t
y(x,t) = y(x,0) + & [ {u(x,t) + v(x,t)}dt .
0

(11-26a)

(1I-26b)

reduced to a pair of uncoupled equations

(I1-27a)

(I1-27b)

Equations II-27 represent a pair of uncoupled first order partial differ-

ential equations equivalent to II-25.

These can be solved separately and the

equation for u only will be solved here since that for v can be obtained by

reversing the sign of t in the solution for u.
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The discrete version of II-27a is

If the periodic boundary conditions U= Yo4oN

(I1-28)

are used, this equation is

invariant with respect to the set of infinitesimal transformations

u - u + ecu k=0, £1, 2
n n n+k ’ ?

characterized by the operator

Equation I11-28 is in the form

where

and U is in the form

TI

.« . N,

where

Since «o = aT and aI = « , the T superscript will be dropped from «.
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The matrix o, whose elements are Yetn? is called an anticirculant matrix.
The inverse of an anticirculant is an anticirculant, if it exists. It is

straightforward to show that if q are the elements of the inverse of the

jtk

matrix whose elements are uk+n so that

qj+k Yitn T 6jn ? then
o - 1 eﬂlks/N -,
k = 2N mijs/N_ °
e u
h|
1 1 eTrl(k+m)s/N
Ym T Y%e4m T 28 “mijs/N '
e uy

(Note the summation over both repeated indexes s and j, and that q is periodic

with period 2N.) There exists then a function

Qm(u-N+1’ < e U_1s Uy, Ups . uN,t) such that
od
o _ q and
auk k+m

od
m - - -
3t -qm+n(un+1 h un-l)/2h - (6m1 6m—l)/2h :

@m can be obtained from a line integral in the 2N + 1 dimensional space of
u and t. A convenient path of integration is the same used above for the heat

flow problem, (page 21). This can be written
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k - em’. (k+m) s/N

v j’ d rl... \ )
¥ T mis/N _ _ miks/N J
0<k<N “ko -N<s<N -k<j<k “yT e v
Uk -11i (k#m) s/N
P S ¢ S N Wi )
L o N L E mijs/N _ _miks/N J
-N<k<-1 ~N<s<N k<j<-k+1l i
t
+ Io de(s_, -8 _,)/2h .
Integrating along this path gives
7ims /N
e mijs/N _ .
@m(u,t) = 5§ 1n(e uj) t(6ml ém_l)/Zh .

It is readily verified that this @m gives the correct a@m/Bu and a@m/at. The

k

relations

@m(u,t) = Km

give the general solutions to equations II-28, where the Km are the 2N arbitrary

constants. Introducing new constants Ms such that

e-nlms/N

1nM = K Py
S

m

one can solve for uj as

-(mijs/N + itsin(ms/N)/h)
_ & MS
uj(t) - 2N .

The MS are related to the initial values of u(u(x,t) = %E y(x,t) + %; y(x,t)) by

MS = enirs/N ui, where ug = uj(O) is the value of u at t = 0. The MS are the
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discrete Fourier transforms of the initial uj' In terms of the u? then

e -mi(j-k)s/N e-itsin(ns/N)/h <L
uj(t) = 5N k

Taking the limit as h = 0, N - =, with hN = L gives the continuous solution to

I1-28 for periodic boundary conditions with period 2L. Introducing the nota-

tion
xj = jh
xé = kh
Ax'= h

and writing in the summations explicitly, we have

e-ni(xj - xi)s/hN e-itsin(nhs/hN)/h o

— ; \_1 \ v & u
u(x,t) = }]-;130 /, /. Ax 2hN k
=N<s<N -N<Kk<N
N —w — —
(Nh=L)
+L o
_ 3, l—-f ! eﬂl(x x+t)s/L @ (x) .
L 2L -L
..q;(SSm
Taking the limit as L — « with

p = s/2L, &p = 1/2L , gives

4 <o 2ni(x' -~ xtt)p o, ,
u(x,t) =f de dx' © u” (")
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"

+e +e 2mix!
f dp f dx' e P (x' + x-t)
- -0 :

i

u® (x-t) .

The solution for v(s,t) is similar to the solution for u, except with the sign

of t reversed, and can be worked out to give v(x,t) = v°(x+t). Since

u(x,t) = ¥(x,t) + y'(x,t)

v(x,t)

S’(X,t) = }" (X,t)

and

It

t
) = y(x,0 + [ & {uGe,D + vix,DlaT
0

we have

i

t
y(x,0) + f £ {y(x4T7,0) + y(x-T,0) + y' (x+T,0) - y'(x-T,0)}dT
0

y(x,t)

ﬁx+t

7 {y(eht,0) + y(x-t,0) + |
X~

|

§(T,0)dT} .
t
This is the usual form of d' Alembert's solution to the wave equation.
Again this is a long and involved way of finding a well known solution that
is much more easily obtained by other methods. The purpose here is to illus-

trate the method and principles involved in applying Lie's theorem.
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In treating second order differential equations by Lie's method it is
necessary to first reduce the problem to a pair of first order equations. If
these two equations can then be uncoupled as was done above,the mechanics of

the solution become much simpler, but the method still applies even if the

equations remain coupled.
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IIT. LIE'S THEOREM FOR
PARTIAL DIFFERENTIAL EQUATIONS

This chapter deals with the extension of Lie's theorem directly to
partial differential equations without the need for the discretization intro-
duced in Chapter II. The extension of theorems for finite matrices to con-

tinuously infinite matrices is given in the appendix.

A, Lie's Theorem

A statement of Lie's theorem for use with partial differential equations

is as follows:

"If the partial differential equation

WY 4 g, 0)ly] = 0

is invariant with respect to the transformations
y(x,t) ~ y(x,t) + e (x,x,t)[y]
- s I- N .
for all relevant x, x and t, and provided an o {(x,x,t)[y] exists such that
I - - - :
dx o (X,x,t) o(x,x,t) = 6§(x - x), then

aTI(x,i,t) = al(i,x,t)

is an integrating factor of the partial differential equation. That is, there
exists a ¢(x,t)(y] such that

TI -
)¢(X,t)[}’] = o (X,X,t) and

&
6y (%

B, 0] = [ dk o' 1,0 Q& 0[]

33



The proof can be constructed along the lines of the discrete version given in

the previous chapter. Such a proof depends on the construction of a satis-

factory theory of continuously infinite matrices. This theory is outlined in

the appendixes and the reader will be referred to there for the necessary

definitions and theorems as needed.

Proof: The differential equation to be integrated,

80N 4 eyl = 0, (111-1)

is to be invariant with respect to the infinitesimal transformation
y(x,t) = y(x,t) + ex(x,x,t)[y] (11I-2a)
Q(x,t)[y] - Q(x,t)[y + ea] (I1I-2b)

to first order in € for all relevant x and X. Making this transformation gives

_g_t}'(x’t) + Q(X,t)[}’] + € %‘ a(i,x,t)[)’]

+ [ dx %5;(;) Q(x,t)[y] a(;(,)-(,t)[y]} +el( .+ =0

For the coefficient of ¢ to be zero,

-2—}’():() Q(X,t)[}’] Q’(;(,;(’ t)[}’] .

RN

d -
o oGxtlyl = <[ d
Considering o(x,X) as a matrix in the parameters x and x, and provided that the

inverse of its transpose exists as specified in the statement of the theorem,

then
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Jax S otk o @R, - -g—y(;) Q(x, t)

T - - T
Here o (x,x) = a(x,x) and « I is the inverse of aT. From the properties of

the matrices

-d T, - TI - - T, - d TI,- -
j. dx E o (x,x,t) o (X)Xat) = "I dx o (%,x,t) d—t‘ 4 (X,X,t) ’
and
. = T, - d TI,- - 6 -
J ax o’ (x,%,1t) oY (x,t) = 5y () Q(x,t) . (I1I-3)

(The functional dependence on y is understood here, and will not be written
where this would cause no confusion.)

The left side of equation III-3 is the right Volterra derivative of the
matrix aTI. It is straightforward*® té show that if two matrices have the
same Volterra derivative, they are proportional to each other through a non-~
singular (matrix) constant. It is also clear that if a matrix is an integra-

P K4

tion factor, a constant matrix, multipiied by the integration factor, is also

an integration factor. Thus it only needs to be proven that the integration

factor, A, also satisfies the equation

[ ax ale,x,0 % A (R,X,t) = %;(}:{) Qx,t) . (I1I-4)

To show this we note that an integration factor for equation III-1 is defined

so that

K(X’;(:t) = '2;(;{)05(&"-)[}’] s (1I11-5a)

*See Appendix, Section F, page 86.
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and
[z et = & sex,0ly] , (III-5b)

and k(x,i,t)[y] is nonsingular. Taking a partial derivative with respect to

t of the first of these two equations and substituting d3¢/dt from the second

gives
o A(x,x,t) = & . d: A( ; t) ; )
a3t PR = 8y (%) j‘ X X,X, Q(X,t
r GRS : N S
= j dx 5y (%) Q(x,t) + f dx A(x,x,t) 5y (X) Q(x,t) ,
and
ko) = Haex0 + [ akE iy & yGo
hng - & . iy _
= [ dx A (x,%,0) 5y () QD) (11I-6)

Multiplying by the inverse of A on both sides gives

Jalcons Saexn = &0 ek |

showing that the integration factor and aTI have the same Volterra derivative.
They are then proportional to each other through a nonsingular constant® matrix
and thus aTI is also an integration factor, completing the proof.

In comparing this version of Lie's Theorem with the discrete version, we

note no mention is made here of obtaining a solution to the differential

*
See Appendix, Section F, page 86,
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equation by performing the line integral in y, t space. The theorem for the
continuous case only gives an integrating factor and not ¢ directly. While
a line integral in a discrete (even infinite) vector space is a straightforward
concept, a line integral in a continuously infinite-dimensional vector space
is not so readily achieved. In practice to perform a line integral in a
continuously infinite vector space, one would discretize the problem, apply
the line integral to the finite (or countable) dimensional vector space and
then perform a limiting process.

In the absence of a solution by a line integral it appears that the theorem
is not very powerful. In fact, Lie's theorem only allows one to change the
partial differential equation into an equivalent variational equation. That

is, the partial differential equation
o ] =
at }’(X,t) + Q(x,t)[y - 0

and the variational equation

l()/

N S T O H N R
T ¢, 0)ly] - | dx Q(x) by(x) LByl =0

Q

are equivalent to each other. It may or may not be more convenient to solve
the variational equation by a '"pseudo line integral” than to attack the ori-
ginal equation. The following sections examine the heat flow equation and

others in view of the continuous form of the Lie Theorem.

B. Examples

1. The one-dimensional heat flow equation

Here the heat-flow equation will be analyzed again, this time using the

continuous form of the Lie theorem stated in the previous section of this chapter.
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The partial differential equation to be solved is

3 52
Yy y(x,t) - 5 yx,t) = 0, (I11-10)
ox

with initial conditions
}’(X,O) = yO (X) )

defined everywhere on the real x axis. (This is equivalent to setting

H - 2 - -
QG0 [y] = -] ax 25 6(x - %) yG,0) ) .
rob.

Equation III-10 is invariant with respect to the transformation
y(x,t) - y(x,t) + ey(x + x, t)
for all x and x. That is, o for the transformation is given by
a(x,x,t) = y(x + x,t) .

. . T , . . . .
o is symmetric (@ = o) and is an anticirculant continuous matrix. Its inverse

is also an anticirculant, It is straightforward to show that if

4 .
e2n1xp
q(x’t) = f dp_.m ’

2mix -
=® f d)-( e P Y(X,t)
-0

(III-11)

then

4
f dx q(x + x) y(x + x)

-0

"

5(x - x)
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Thus we have

< 2ni(x + x)p
_\s___\..(X,t) _ TI - - r
Sy (;{,t) = (x,x;t) = q(x + x) = J dp.'(p Zﬂi}z{ - (III-lZa)
= [ae P yx,0)
and
+oo +o )
%‘b(x’t) = -f dx Jf‘ a% o L (x,%,t) &= 6(x - %) y(X,¢t)
3%
-0 -0
a2
= 5 8 . (III-12b)
ox

The general solution to the partial differential equation then is

o(x,t)[y] = K(x)

where K is an arbitrary "constant" vector. (K(x) is a constant in the sense

S K(x)
Sy (x)

that 3t K(x) = 0 and - 0.)

Finding ¢(x,t)[y] from 8¢/6y and o¢/dt is something of a problem. In this
particular case it is possible to look at the discrete version of this problem
and figure out what ¢ ought to be in the continuous case. The discrete case
can be solved by taking a line integral in a finite-dimensional space. 1In the
continuous case one must essentially guess the integral and verify by substitu-
tion in III-12. While this may appear crude, it is, nevertheless, the way all
quadrature is done, the problem here being more complex in that it is the entire
line integral that must be guessed, rather than the individual components of a

line integral.
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By inspection of III-12 it is not difficult to see that

4o <o
2mi = 2ni§p : 82
p(x,t)Ly] = I dp e *P 1n( I dx e y(x,t)) - t -3 §(x) (III-13)
ox

gives the correct 8¢/6y and dp/d3t. The general solution is ¢(x,t) = K(x)
where K is independent of y and t, but can depend on x. To relate this solu-

tion to the initial value problem where
}’(X,O) = yo (x) s let

4
Ino1(p)) = | ax e 2P k(x)

-Q0

and take the Fourier transform of both sides of

+ +oo

2mi = omi%p .z a2
j dp e2mi¥P 1n(f gk XM yG,0)) -t 25 80 = R (111-14)
-0 - QO ax
giving
4o _
[ ai 2T (5 2
1n('J dx e y(x,t)) - t(2mip)” = 1n M(p)

-0

Solving for y:

by 2
ye,t) = [ ap 7P T (TRITE ()

-0
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! M(p) then, is the Fourier transform of y° (x),

4+
M) = I ax 2R o (3

-

so that y(x,t) in terms of y° (x) is

+<o +x 2
y(x,t) = J dp f ax e 2Mi(x - N)p - (2mp) "t oy (III-15)

Doing the p integration first gives the usual form of the solution to the

initial value problem:

4o 2
-(x - %) /Ll\/T: o =
y(x,t) = jdi E-ﬁg———— y (®) (I1I-16)

It will be noted here in comparing with the procedure for solving the
discrete form of the heat flow equation, that there is a one-to-one corres-
pondence between the steps in each. The discrete solution can be used as a
model or guide in following the continuous case or vice versa. The continuous
case is possibly easier to follow because of the absences of the discretization
and limiting processes. One notes that all the discrete Fourier transforms are
replaced by the corresponding continuous transformation and these are only
introduced to relate the general solution ¢ = K to the initial value type

solution.
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The one point in the continuous case that is possibly more complex than
the discrete case is relating the gradients of ¢ (with respect to y and t) to
¢, itself. 1In the discrete case this can be done by a line integral in a
finite-dimensional space; the analog in the continuous case would be a line
integral in a continuously infinite-dimensional space -- a rather difficult
concept. In any event, Lie's theorem reduces the problem of integrating a
differential equation to finding a quadrature or set of quadratures, provided
the appropriate invariance group can be found.

The wave equation example given in the preceding chapter can be worked
out in a manner similar to the heat flow equation without recourse to dis-

cretizing. The two treatments are so similar that this will not be done here.

2. A class of linear problems

From the heat-flow and wave equations it can be seen that there is
a general class of first order linear initial value problems that can be
solved by use of the same transformation. Consider the partial differential

equation of the form
{%E + f(t,é;)} y(x,t) = 0 (111-20)

where f(t,z) is integrable in t and a fairly good function® of z. This equa-

tion is invariant with respect to the infinitesimal transformation
y(x,t) = y(x,t) + ey(x + x,t) ;
thus

a(i,x,t) = y(i + x,t) , and

*In the sense of Lighthill [30]
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TI - =
(&%) = [ ap & . (I1I-21)
- f ds e21'rlp v(s,t)
-0
- The functional ¢ is given by
+xo 4o
} r Ve $ [ [p JEC I
8(x,t)ly] = | dp e” P qn( J dx e“P¥ y(%,t))
-0 -0
‘ >
[ et s, (111-22)
0
and the general solution to III-20 is
¢(x,t)Ly] = K(x)
In terms of the initial conditions, y(x,t) is given by
+o 4 ot
y(x,t) = J dp J’ dx 2Mi(x - X)p - ‘Jo de £(t,2mip) 2 0y . (111-23)
- Q0 -Q0

3. Partial differential equations in more than two independent variables

Lie's theorem is also applicable to partial differential equations

that are first order in t and have several independent variables X5 Xy, X

2> 73

« « « « In this case, the statement of the theorem is modified so as to re-

i place x by the vector X = {xl,xz,x3 .o s .} , and dx by the volume element in x

space, dx = dxl, dxz, dx3 « v e
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The family of partial differential equations mentioned above in Section

2 of this chapter can then be generalized to

{% + f(t,a—x)}- y(®,t) = 0 (111-24)

where 3/3x is the gradient operation with respect to the components of x .

This equation is invariant with respect to the transformation

y(x,t) « y(x,t) + ey(x + X,t)

The integrating factor is

17T +e RUTIN R
X,%x,t) = | dp . -2
o (%, %,t) fderQ° — | (111-25)
- fd's' 2P S (T by
-0
The functional ¢ is given by
+ . Ao t -
— — 5 . = - P . 3 — - - a —
8,00yl = JF dp e2MiX " P 1n(J' dx 2P X U3 1)) + f dt £(8,3) 8()
0

-0 -0

and the solution to III-24 is

o, 0)[y] = K(X)

In terms of the initial conditions, y(x,t) is given by
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yGot) = [ dp [ a5 JSMEEx X P - Iodt £(8,2mip) (3 0y . (111-26)

The notation used here in that d;, dp represent volume elements in x and p

space respectively, x - ; is the scalar product, i.e. x °* ; = X{Py + X5Py +

i « « « , and 6(;) is the multi-dimensional delta (generalized) function

§ (%) = 8(x;) 8(x)) 6(xz) + . . .

All of the results derived with a scalar X can be carried over to the

case where x is a vector.
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IV. RESULTS AND CONCLUSIONS

A, Results

The main result of this investigation is that it is possible to apply
Lie's theorem to the integration of partial differential equations. This
can be done in two ways.

The first method is to discretize the partial differential equation so
that it is approximated by a system of coupled ordinary differential equa-
tions and then apply the form of Lie's theorem for a system of ordinary
differential equations. A limiting process can then be used to get from
the solution of the discrete approximation back to the continuous case. This
is an awkward procedure but has certain advantages. The main advantage is
that in the discrete case, Lie's theorem gives a prescription both for the
construction of an integrating factor and for integrating the resulting equa-
tion by way of a line integral in a finite dimensional space.

The second method uses a form of Lie's theorem applicable directly to the
partial differential equation without introducing a discrete approximation.
But here one obtains a prescription for constructing the integrating factor
only. The actual integration becomes a line integral in a continuously infi-
nite dimensional space. Such line integrals are not as obvious as in the dis-
crete case.

Lie's theorem for systems of coupled ordinary differential equations is
as follows:

"If the differential equation %%(t) + Q(y(t),t) = 0, where y and Q are
vectors, and t a scalar, is invariant with respect to the set of transforma-

tions specified by
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3
] = L—
Ln Q’ns(y,t)ays s

. . o . TI ,
where o is a square matrix and =— a vector operator, then provided o”~ exists,

oy

the general solution to the differential equation is
f aTI(dy + Qdt) = K

where the integral is understood as a line integral in y, t space along any
convenient path, and K is an arbitrary vector constant.'" (Summation over
repeated indexes is understood.)

Lie's theorem for partial differential equations is as follows:

"If the partial differential equation

2D 4, 0y] = 0

is invariant with respect to the transformations
y(x,t) « y(x,t) + ea(x,x,t)[y]
- . I - ,
for all relevant x, x, and t, and provided an o (x,x,t)[y] exists such that

f dx al(i,x,t) a(x,;,t) = 6(x - ;) s

then aTI(x,i,t) = al(i,x,t) is an integrating factor of the partial differential

equation. That is, there exists a ¢(x,t)[y] such that

Sl @O = oMo and
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P00y = [ ax o’k 0 QG0 ly] L

Proof of the first version is straightforward. Proof of the second
involvés a theory of continuously infinite matrices. A development of continu-
ous matrices based on distribution theory or generalized functions is given in
the Appendix.

The examples given here (heat flow equation and wave equation) are all of
linear partial differential equations. There is nothing in Lie's theorem that
restricts it to linear problems but no example of non-linear equations, solva-

ble using Lie's theorem, have been found.

B. Conclusions

The method of solution of partial differential equations by use of Lie's
theorem has both advantages and disadvantages. Among the advantages are the
following:

1. Where it can be applied, Lie's theorem gives a completely general
solution to the differential equation. It is general enough so that, in
principle, any boundary conditions can be accommodated.

2. The method as given here applies to single first order partial
differential equations, but can be extended both to higher order equations
and systems of partial differential equations.

3. While a knowledge of group theory would be useful, the method does
not depend on the general theory of Lie groups or the structures of the Lie
algebras for its use.

The disadvantages are as follows:

1. It is not clear what class of partial differential equations can be
solved by Lie's theorem and which cannot. There is probably a large class of

differential equations that cannot be solved in this manner.
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2. It is not usually easy to find an appropriate transformation neces-
sary to apply Lie's theorem to a particular differential equation. There is
no straightforward prescription for finding such a transformation. There
are undoubtedly many equations for which the required kind of transformation
does not exist.,

3. Even when a suitable transformation group can be found it is not
always easy to find the inverse matrix that is the integrating factor.

4, 1If the inverse matrix is found, it may still be difficult to actually
do the necessary line integral.

5. Finally, if the line integral can be done, the solution may be in an
awkward form (possibly as an integral relation) that is not easy to use or

for applying initial conditions.

C. Recommendations for Further Study

Several improvements and extensions of Lie's theorem, and the application
of group theory to partial differential equations can be suggested.
1. Lie's theorem as stated here applies to a single first order partial

differential equation of the form

& yex,0) + Q0] = 0 . (1v-1)

While it is straightforward to extend this method to higher order partial
differential equations or systems of equations, it is difficult to use these
extensions. Work remains to be done on examples of the higher order and sys-
tems of partial differential equations.

2. It should also be possible to find an extension of Lie's theorem in

such a way as to allow its application to systems of equations of the form

49



2 3 n
fi @—%, i—%, —a—%, N a—%’ X, t)[y] =0, i=1, 2.
ot™ at dt

This would eliminate the necessity of bringing equations in to the form IV-1
above before solving.

3. Lie's method is applicable to non-linear partial differential equa-
tions but so far no such examples have been found. It ought to be possible,
for example, to set up transformations and then find rather general forms of
partial differential equations that are invariant with respect to these
transformations. 1In this way, tables of equations and transformationscould
be made, and used (much as tables of integrals are used) for finding integra-
tion factors. Here, one would expect that classical group theory and the
structure of Lie groups would be useful in classifying and correlating the
equations and integrating factors.

4, 1In the case of a single ordinary (or total) differential equation,
if two distinct integrating factors can be found, their ratio (set equal to
a constant) represents a solution. There should be similar theorems for
systems of ordinary differential equations and for partial differential equa-
tions but these are not known.

Respectfully submitted,
r,(:: 9\ /g-lr(l/zﬂj{k

L. J. Gallaher
Project Director
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A, Mathematical Background

Notation: N will denote the set (0,1,2, . +) of natural numbers, Z
the set (0,%#1,+2, . . .) of integers, R the field of real numbers, and C the
field of complex numbers., If K is any of the sets above, then K* will denote
the same set without the zero element.

Dfn: A non-empty set E is said to be a vector space over the field C of
complex numbers if there is a binary operation + from E x E into E and a bi-
nary operation - from C x E into E such that if x, y, zeE, a, beC,

(D) x+y=y+x.

2) x+y)+z=x+ (y+2).

(3) There exists an element O¢E such that x+0=0+x= X .

(4) There exists an element -xeE such that x + -x = -x + x = 0,

(5) a - (x+y) a-x+a-y.

(6) (a+b) -« x a-x+b -+ x.

(7) (ab) + x = a - (bx) .

(8) 1« x=1x.

Dfn: A non-empty set E is said to be a topological space if there exists
a family T of subsets of E such that

(1) ¢, EeT

, , ; U

(2) 1f (OX)XeL is a family of sets in T, then NeL OxeT
n

(3) 1f 01, 02, . e ey OneT, then {)IOiGT .

The elements of T are called open sets.
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Dfn: A map f from a topological space E into a topological space F is
said to be continuous at a point xe¢E, if for any open set W of F containing
f(x), there is an open set V of E containing x such that f(V)CW. f is said
to be continuous if it is continuous of every point of E.

Dfn: 1If E is a topological space and xc¢E, then a set NCE is said to be
a neighborhood of x if there exists an open set O in E such that xeOcN., A
family of neighborhood (Nh)xeL of xeE is said to be a fundamental system of
neighborhoods if for any neighborhood N of x, there is a hoeL such that
NKC: N.

0

Proposition: If E is a topological space, xeE, (N a fundamental

X)AeL

system of neighborhoods of x, f a map from E into of topological space F,

™) M @ fundamental system of neighborhoods of f(x) in F, then f is con-
R

tinuous at x if, and only if, for each poeM, there exists a AoeL such that

£(N, )N
KO o
Proof: trivial,
Dfn: ©Let E, F, G be topological spaces. Then a function f : EX F —- G
is said to be continuous at (x

O,yo) € E x F if for any neighborhood W of

f(x ) in G there exist neighborhoods V., of X in E and V, of Yo in F such

0’70 1 0 2

that f(v1 x VZ)CW‘
Dfn: A non-empty set E which is both a vector space over C and a topo-
logical space is said to be a topological vector space over C if the maps
(1) (x,y) »x+ 7y fromE xE—~ E
(2) (a,x) » ax from C x E - E

are continuous. (where C is endowed with the normal topology).
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Dfn: 1If E is a vector space over C then a subset A of E is said to be
convex if for any x, yeA, a, beC, a, b 2 0, a+ b = 1, then ax + byecA.

Dfn: A topological vector space E is said to be a locally convex space
if each point in E has a fundamental system of convex neighborhoods.

Note: It is easy to check that if (NX)XGL is a fundamental system of
neighborhoods of zero in a topological vector space E then (x + NK)AeL is a
fundamental system of neighborhoods of any xeE. In particular, E is locally
convex if, and only if, zero has a fundamental system of convex neighborhoods.

Dfn: Let R+ = {xeR: x > 0}. Then a function q: E - R+ where E is a
vector space is called a semi-norm or E on the following holds:

(1) q(ax) = |a|q(x) for all aeC, xecE

(2) q(x + y) < q(x) + q(y) for all x; yeE

THEOREM: Let E be a vector space over C and (q )

el a family of semi-

norms of E. Then there exists a unique topology on E associated with the
family (qL)LSI which makes E into a locally convex space. A fundamental sys-
tem of neighborhoods of zero is given by
Nm’€ = {er: qu(x) =¢, 0= k<= m}

where € > 0, meN, 2 O <k <ma finite subset of I.

Proof: See Horvath [33] pp. 88-89.

Din: Let E and F be vector spaces. A map f: E — F is said to be linear
if for all x, yecE, aeC,

(1) f(x+y) = f(x) + £(y)

(2) f(ax) = af(x) .
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Proposition: A linear map f from a topological vector space E into a
topological vector space F is continuous if and only if it is continuous at
the origin.

Proof: See Horvath [33] p. 97.

Dfn: 1If E and F are non-empty sets, a map £: E — F is said to be
injective (one-to-one) if for any x, yeE such that f(x) = f£(y), then x = y.
£ is said to be surjective (onto) if for any yeF, there exists an x€E such
that f(x) = y. If f is both injective and surjective, it is called bijec-
tive.

Proposition: If f: E — F is a bijective map and for each yeF, we
define g(y) = x if and only if f(x) = y, then g: F — E is a bijective map.
g is called the inverse of f and denoted f-l.

Proof: trivial.

Dfn: If E and F are topological spaces, then a continuous bijective
map f: E — F is called a homeomorphism if f-1 is continuous.

Dfn: If f: E~F, gt F - G are functions then we denote the function

g{f{x)) from E into G by g o f.

Note: if f: E = F is bijective, then f-l o f = IE and £ o f-1 = IF'

B. Rapidly Decreasing Functions and Temperate Distributions

Dfn: A function f: R — C is said to vanish at infinity if given ¢ > 0,

there exists a M =2 0 such that
|f(y)| < ¢ for all |y| >M .

Dfn: T will denote the set of infinitely differentiable functions
¢: R — C such that for each ReZ, peN, the function y - (1 + YZ)RQ(P)(y)

vanishes at infinity.
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Dfn: 0M will denote the set of infinitely differentiable functions
@: R — C such that for each peN, there exists a keZ such that the function
vy - (1+ yz)ka(p)(y) vanishes at infinity.

Dfn: OC will denote the set of infinitely differentiable functions
B: R — C for which there exists a keZ such that the functions y — (1 + yz)k
B(p)(y) vanishes at infinity for all peN.

The elements of T are called rapidly decreasing functions. It is easy
to see that if @eT, that w(p)eT for all peN. Also, TCLl(R).

If for each keZ, peN, we define qk p: T - R+ such that
I

_ 2,k | (@) i
9y @ = rx; {(1 +v)" e (Y)[}

then 9 D is a semi-norm on T. Thus, the family (qk p) defines a
3 b

(k,p)eZ x N

unique locally convex topology on the vector T which makes T into a topologi-

cal vector space. A fundamental system of neighborhoods of 0¢T is given by

Nk,m,e = {¢€T: 1+ YZ)klcp(P)(,Y)I <e,ps m}

where k, meN, ¢ > 0. (See Horvath [33] pp. 90-91).
For each keZ, let Tk denote the class of all infinitely differentiable
functions f: R = C such that the functions y - (1 + yz)k f(p)(y) vanishes at

infinity for each peN. For each keZ, we let the family (qk p)peN of semi-norm
b

defined above determine the topology on Tk which makes T, into a topological

k
vector space,

It is easy to check that OC = ngTk. Furthermore, a fundamental systems

of neighborhoods of T, is giwven by

k
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Nk,m’€ = {fe T 1+ YZ)k lf(p)(v)\ <eps m} .

If i, : T, — O, is the canonical injection (i.e. ik(w) = ¢ for all @eTk),
then we equip 0C with the finest locally convex topology for which the family
(ik)keZ of maps are continuous. (See Horvath [33] p. 157).

Proposition: If G is a locally convex space and g: O, 2 G is a linear

map, then g is continuous if, and only if, the maps g o, i T, - G are con-

k' Tk

tinuous (i.e. g is continuous if, and only if, g|T, is continuous for all

k
keZ).

Proof: See Horvath [33] p. 159.

Dfn: If V is any vector space over a field K, a linear function f: V — K
is called a linear form (functional) on V.

Dfn: The set of continuous linear forms on T will be called temperate
distributions. This set will be denoted by T'.
40

If TeT', @eT, then we will denote T(p) by either <T, ¢> or I T(y)p(y)dy.
-C0

Dfn: The set of continuous linear forms on OC will be called rapidly

decreasing distributions. This set will be denoted by 0.

c
+=
If Seoé, BeOC, we will denote S(B) by either <S, B> or f S(Y)B (y)dy.
-C0
Examples:
1 +x
(1) 1If feL " (R), and <T, ¢> = j £(y)p(y)dy for all @eT, it can be shown
-0

o

that TeT'. T is usually denoted T, or f.

(2) If <T, ¢> = ©(0) for all @eT then TeT'andT is usually denoted by §

4o
and called the Dirac delta measure. (i.e. I 85 (y)e(y)dy = ®(0)).
4 o
(3) If geT, and <5, B>= [ o(y)B(y)dy then 5 © O!. For let keZ
- Q0
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and ¢ > 0 be given. Then if M = max {(1 + Yz)'k +1 |¢(Y)|} < @ and

YeR
_ 2.k €
Nk = {BeTk: (1 ++v7) |B(y)|<6} , where 6 = o
Mkj 'dJ—Z' + 1
- 1+'Y
then Nkisaneighborhoodof(xmk, and if BeNk s

) 4

[<s8>l = | [ etmBmay| < [ lon||ey |ay
-0 -0

+o
s a+yH s @)™ gy

e 2, -1
Mk c 6 . f (1 ++v7) dy

-0

i

oo

- . dy . € i
" M L1+2 g - |
R W B |
-w]_-{-'Y i

Thus, S@|Tk is continuous at the origin and hence continuous. Hence, by the
previous proposition, SCP is continuous on Oc' Therefore, S@eOé. |
(4) If S is such that <S, 8> = B(0) for all BeOc, then Seoé.
P omi g
THEOREM: If for each @eT, we define @(ﬂ) = Flol (M = f e Y ¢(y)dy, the

-0

map F: ¢ - @ is a linear homeomorphism from T — T. The inverse of F is given
-1 + omin
by the map F': ¢ — T where 7(7) = I e Y @(y)dy for each TeR.
-C0
Furthermore, if for each TeT' we define F[T] such that <F[T], ¢> =
<T, Fl¢]> and Fl[T] such that<:§k1ﬂ,¢>=:<T,Fl[¢]> then F[T] and fl[T] are in T'.
Proof: See Horvath [33] pp. 408-411.

The maps F and fl are called the Fourier and inverse Fourier transforma-

tion respectively.
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THEOREM: if w: R — C is a function, then opeT for all @eT if and only if
aeoM. The map Ma: @ — ap is a continuous linear map from T into T if and
only if anM.

Furthermore, if for each TeT', aeO

e W define oT such that <oT, @> =

<T, aep> for all @eT, then oTeT'.
Proof: See Horvath [33] pp. 417-419,
Note: It is easy to see that if anM, then Ma is a homeomorphism from

T onto T if and only if é eOM, and if Ma is a homeomorphism, ﬁ; = Ml .

o
THEOREM: 1f peN, and we define DP[q) = w(p) then DP is a continuous linear
map from T into T. Furthermore, if TeT', and we define pP[T] such that
<DP[T], > = (-1)p <T, D(p)[qﬂ> for all @eT, then Dp[T]eT'.
Proof: See Horvath {33] pp. 4l1-412.
Dfn: Let f: R — C be a function., Then for each heR, aeR*, we define
Thf to be the function y - f(y - h) and paf to be the function y — f(ay).
Proposition: the function Th: P T and Ra: P~ ou® where aeR*, heR

are linear homeomorphisms from T onto T.

Proof: It is clear that these maps are linear and bijective. Furthermore,

since ih = T-h and ﬁi = Rl/a’ we need only show they are continuous. Let
2,k _(p) }
= -. < <
N me = 4o @+ OF 1P <e, p

where keZ, meN, peN, p < m, and € > 0. First we show Th is continuous: Let

k IT(p)

= q41eT - (1 + yz) (Y)l <S, psm+1
M mH1,s

where S = 1/2 %—;—Tﬁ]. Then if ¢¢ M ., o and p <m, then
3 3
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max {(1 + Y2)k |¢(p)(y - h) - Q(p)(y)l} = max {Ihl(l + YZ)k Iw(p + 1)(y)|}<€/2 .
veR YeR '

In particular,

@+ v 1Py - milcerz + @+ ¥H* [o® e

Hence, if oe Mk,m+1,S’ we have Th[qﬂe Nk,m,e so Th is continuous for all heR.

To prove Ra is continuous, we take Nk m.e 28 above and choose
3 3

Mk,m,s = {T€T: (1 + yz)k |T(p)(y)|<s, p = m}

where S = e/[nZk(l + |a|)“ﬂ and neN” is large enough so that |a| > % . Then

i <
SK NS RS

@+ YO8 (R Pm] = @+ yH [Pe® @y

< (1 + yz)k |a|p(1 + (ay)z)-k - S

< (1+ yz)k(n2 + yz)-k n2k Ialp s

Therefore Ra[@]e Nk,m,e whenever e M so R is continuous. Q.E.D.

s,
Dfn: We also let Tho heR be the map X —» x - h and Hgs aeR”* be the map
x — ax from R onto R.

From the above definition, we see that TR = P ° Ty and WP = @ ° Hye

Thus, if p and v are any of the maps p or 7, we define pVp to be the map

@oVop o Thus, we see that HaTHY is the map y — ¢(ay - h) and ThHa® is the
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: ) *

map y — o(ay - ah). Also, if by, hoeR, 1 = T 9= Th + p @ and if a, beR',
1 2 1 2

HaHp¥ = Ml @ = M @

- * o v = [+] = [ =
Note: 1If a, beR", hl’ hzeR, then Ra, Rb = Rb Ra = Rab and Th Th =

1 2
T, oT, =T . Also, R, =T = I.
h2 h1 hl + h2 1 o
THEOREM: if TeT', heR, and we define ThT such that <ThT,¢> = <T,T_h¢> for
. * , 1
weT, then ThTeT'. Also if aeR™ and we define paT such that <paT,@> = TZT

<T,p1/a¢> for all @eT, then uaTeT'.

Proof: Immediate since ThT =T o T_h and uaT =T o Ra’ all of which are

continuous and linear.

Remark: If feLl(R) and T = Tf, then from the definitions and theorems

above it is easy to check that

A

F[Tf] = Tg,

P _ o () _ _ -
D [Tf] = T, ol = T,er Thlg = TThf, and p T = T“af .

Proposition: If TeT', ¢eT and we define the convolution T*¢ by

TR%M) = <T,Tpu _ (9>
"

for all TeR, then T*¢e OC and the function ¢ — T*p from T into 0c is continuous
for each TeT'.
Proof: See Horvath [33] p. 420.
Note: If feLl(R), T = Tf, then
o
T = <Temou @ = [ £ (ru_1@) (D

4 +
= [ £ oM - Yoy = [ £ - v) o(Wpy
= f*(p(n) .
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Dfn: If Seoé, TeT', ¢eT, we define the convolution T*S such that

<T*s, ¢ > = <S,(p_1T)* >

Note: This is well defined for, by the previous proposition (p_lT)*¢eoé.
Furthermore, T*SeT' since ¢ - (u_lT)*¢ and S are continuous. Also, this
definition agrees with the previous one if S = ST, T€eT.

THEOREM: The Fourier transform maps Oé isomorphically onto OM’ its inverse is
the inverse Fourier transform which maps OM isomorphically onto Oé and if

Seoé, TeT', then

(1) F[T*s] = F[T] - F[S] .

Furthermore, F also maps 0M isomorphically onto Oé, F_1 is its isomorphic
inverse, and for «e€Q,, TeT',

(2) FloT] = Flo] *F[T] .

Formulas (1) and (2) also hold with F replaced by Fl.

Proposition: If S S, €0', then
c

1 Sy 55

% '
(1) S1 82 €0C .

(2) (31*32)*33 = sl*(sz*s3)

% = *
(3) 8,7, = 8,5,

Proof:

' * — N
(1) If 8;, S, €0 then F[slj, F[Sz] €0, and F[s1 s2] = F[Sl] F[82] €0y

=1 - * _ * '
F [F[s1 82]] = 8,78, €0/

- %, %
(2) FL(3,%5,) *s,]

F[(SI*SZ)] - F(8,] = F[81] . F[82] - FLs,]

F[Sl] F[(SZ*S3)] = F[Sl*(Sz*S3)]
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(2) If : R~ C is a function the map Ma[m] = ap for all @eT is in L(T)

if, and only if, anM. Furthermore, Md is invertible if and only if 1/oze:0M

and in this case, Md = Ml/a'

(3) The previously defined functions Dp, T. , heR, Ra’ acR* are in L(T).

h’

° [ .

Notation: For convenience we will denote the elements of T' by %, g, h,
+o
etc. and for @eT we will usually write f %(y)@(y)dy for <%,@> .
. -0
THEOREM: If feT' and for each geT we define szqﬂ = £%p, a necessary and
sufficient condition for C% to be in L(T) in that feOé (or equivalently,
F[ £] €0) -
Proof: Suppose C;eL(T). Then F o CEeL(T) and if @eT, F ° C;[qﬂ = F[%*¢J
= F[£] - Fl¢@]eT. But every element in T can be expressed in the form F[p] so

by a previous theorem, F[%JGOM (i.e. aTeT for all T1eT if, and only if, anM).

Conversely, if %eoé, then F[%]eOM 50 MF[%]GL(T)' Furthermore, for each

peT,

ot

e rey o Flel = FURLE - Fla) = FURLEN] = B - cile) . ;

Thus

°—1o °. o
C.=F MF[f] FeL(T). Q.E.D.

Dfn: 1If %eoé, the transformation C;[qﬂ = %*¢ is in L(T) and is called
the convolution transformation of %. The set of convolution transformations
in L(T) will be denoted Lc(T)'

Proposition: If C;eLC(T) and F the Fourier transformation then

o_
F o Cf— MF[%] ° F.
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Bv taking ?1 of both sides we ggt (2).

(3) F[sl*szj = F[81] F[SZJ = F[52] F[Slj = F[sz*sl] Q.E.D.

C. Continuous Linear Transformations on the Rapidly Decreasing Functions

Dfn: L(T) will denote the class of continuous linear transformation from
T into T.

Dfn: If E is a non-empty set, we say E is an associative algebra over C
if E is a vector space over C and there is a binary operation - from E x E into
E such that for x, y, zeE, aeC,

(1) (x+y) rz=%x-2+y .2z

(2) x(y + 2)

it
]
<
+
]
N

"(3) a(x - y) = (ax) . y=x - (ay)
W x.y) +z=x+ (y - 2z2).
Furthermore, if there is an element ecE such that e « x = x + € = x for all xeE
then we say E is an associative algebra over C with identity.

Dfn: If U, VeL(T), zeC, and @eT, then we define the following:

(1) W+ Vel = vlel + vig]
(2) @ - [l = 2 - Ulyp]
(3) W -° Vel = ulvlel] .

This definition makes L(T) into an associative algebra over C with identity.
This identity is the function I such that I[¢g] = ¢ for all geT.

Dfn: An element UeL(T) is said to be invertible if there exists an ele-
ment ﬁleL(T) such that U o ﬁl = ﬁl ° U= 1. ﬁl is called the inverse of U.
Examples:

(1) The Fourier transformation F is in L(T). Also fl is in L(T) and since
P o ) = FLF'ql] = ¢ = I(g] and F! o ¥(g] = I[g] for all geT, F' is the

inverse of F.
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Note: MFE%JeL(T) since F[f]eOM.
Proof: If geT we have F o CE[¢J = F[%*¢ﬂ - F[£] - Fl¢], and MF[%] o Fle]

- Mg [F{¢]] = F[£] « Flo] . Q.E.D.

Corollary: 1If CEeLC(T) and F, Fl are the Fourier and inverse Fourier transfor-

mations respectively, then

Proof: By the above proposition,

o) -]- o -1 -1 —1
° o = o o F = [ o o = o. © o = @ . .E.D.
F Cf F (F Cf) (MF[f] F)°F MF[f] (F°F) MF[f] Q.E.D
Proposition: 1If C% is a convolution transformation and - EE] eOM, then
F
C; is invertible and
Gt-Ft oM, o o F
£ 1/F(£] :
. ° =1 1 ° [ =1 °
Furthermore, if g = F[ — ], then g ¢0' and Cc = C° ,

Proof: Using the previous corollary and since

..]_ R
Merg) = Mysp[E) o
we have
C% o (Bl o M., o oF) = (FX o M_ 9 o F) (FL oM , % o F)
£ ° 1/F[£] - FL£] 1/F[£]

_-10 o_ o o. o
= F ° Mprgy ° Mygprg) ° F

sflereF=1.
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. . "1 ° ° ° o _ .
Similarly (F Ml/F[f] F) Cf = 1. Thus, the first part of the

proposition is true. Since

eOM , then

S0 é} €L(T). Furthermore, if @eT, then

8
a1 =1 1o 1
C;Ecp] = (F" o My prey © B)gl = FL e Flel]
= Pl L1 » Feled) = & * o= c2lg] . Q.E.D.
FL£] &
Examples:

(1) If stl(R), F[£]e0., then CEeLc(T) and for each eT,

4o
CelolM = £ * oM = [ £(N - Vogy .

-0

(2) Let peN and 6(p) be the pth derivative of the Dirac measure. Then

6(p)€0é and for ¢eT,

() _ (p)

-nP <s, (r

T]u_lcp)(p) >

0P <6, VP 0®) >
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= e @ = P

Hence, DpeLC(T)'and o = Cé(p)v. In particular, I = Cé.

-2
(3) Let f(y) = % e nalyl, a > 0. Then feLl(R) and

+ .
FLEl(p = [ e 27N E e malvly gy

€0, .
Yw 82+ﬂ2

M

1 2 2 A .
Thus, Cf eLc(T). Furthermore, F[f](n) = a + 17 eOM so Cf is invertible and

C, = C; where é = -F"l[a2 + ﬂzj. But

f
ﬁl[az + ,n2] _ f‘l[az:l + I-:ll[nz] - 326 - _]_._2_ 6"
4ny
o S W2 . Lo
2
4m

Proposition: If LC(T) denotes the class of all convolution transforma-
tions in L(T), then LC(T) is a commutative subalgebra of L(T) which contains

the composition identity and the composition inverses if they exist.

Proof: Let C%, C; eLC(T) and ZeC., It is clear that C; + C;, ZC%eLC(T)
o © °© o
: ° o _ o o ° _ °. . 1 * ' .
since Cf + Cg = Cf + g and ZCf sz Since f, geOC, we know £ g eOC and if

weT,
cg o Colel = cile *ol = £ * (g * )

But @eoé and by a previous proposition f * (g * ¢) = (f * g) * ¢ so
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Furthermore, since f * g = g * £ we have

o o o = Ceo o = (o o = o % C° .
Cf Cg Cf * g Cg * § Cg Cf

Since we have already shown C eLC(T) is the identity and if C% is invertible,

' f

1

(<]

F[ f]

then 6% = Cé where é = fl[ eOé then éieLc(T) and the proof is complete,

Dfn: For each aecR*, let R_ be the transformation Ra[qﬂ = ¢ for all
weT and let Lca(T) denote the set of all transformations which can be written

in the form

Aa,% = Cf ° Ra
where
C%GLC(T) .

Note: Lc'(T)

LC(T).
Proposition: For each aeR*, Lca(T) is a sub vector space of L(T) and

the map La: LC(T) - Lca(T) such that La(C%) = Aa,% is a linear isomorphism

from the sub vector space LC(T) into Lca(T).
Proof: It is trivial that Lca(T) is a sub vector space of L(T) since

A + A o= (Co4+C°) o R_ = © o R and Z + A 2 =C,2 o R_ .
f g a a

a,% a,g a C% + g f Zf a

Furthermore, since Ra is invertible, C°fRa = 0 if, and only if, C% =0

so L is injective. It is surjective from the definition of Lca(T) and the

linearity follows since C% + Cg = C% + é and ZC% = CZ% . Q.E.D.

Proposition: If aeR%*, Aa °€Lca(T), and g

1
£ £ , then geOC and

L
|a] "1/a
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Proof: It is clear that geoé . Let @eT, TMeR. Then Aa ° = C% o R_ and
a

i

¢z o RLeJ (M = Colu gl (M) = £ * (@) (M)

i

< f = < f
f, Tnp_lpaw >=< f, Tnp_a@ > .

Also

R ° Cg[@ﬂ(ﬂ)

a

R[&8 * p(al] = g * o(al)

[}

o 1 Q
< 8, Tanu_1¢ > = |a| < Ul/afa Tanu_1¢ >

Q.

=< f, MaTant-1® > .
But if yeR, we have
(Te_ ) Cy) = w(u_aTn(v)) = p(e_,(v - M) = o(al - ay)
and

(HaTanu_l)w(Y) = @(H_lTanpa(y)) = w(u—lTaﬂ(aY))

i

¢(u_y(ay = al)) = @(al - ay)

= i o = ° o
Hence, Tnp_am = paTanp_lw and it follows that C: o R = Ra Cg . Q.E.D.

Corollary: 1If aeR¥*, U = Ra ° Cé where éeoé, then UeLCa(T) where U = C% ° Ra

and % = |a|pa§.
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Proof: From the above proposition C% ° Ra = Ra ° Cﬁ where h =T§T ”I/a%
o

1 °
Ial Hl/a |a‘ £, 8=8 . Q.E.D.

a

-] -]
. * ° '
Corollary: If a, beR¥, Aa,% eLCa(T) and Ab,g eLCb(T) where f, ge0O!, then

Aa’% o Ab,g = Aab,ﬁ eLCab(T)

where h = f * (|a|pa§).

Proof: By the above corollary we have

BB 2 g CproR)  (CgeR)=Cpe R0 Cp o By

C% ° (C|a|ua§) ° Ra o R.b = C% * (Ialuaé ° Rab . Q.E.D.

Note: A ° o A o = Ceo ° eL.(T) .
- Moy c

D. Continuously Infinite Matrices

Theorem: Let UeL(T) and for each TeR, define < %ﬂ’ © >= Ulp] (M) for all
@eT. Then %ﬂeT' for all TeR.

Proof: %n is clearly a linear form on T so let Ne = {ZeC: IZI < e} where
e > 0 be a neighborhood of O in C. Now let Me = {7eT: IT(y)| < e, yeR}, then
M€ is a neighborhood of O in T so, from the continuity of U, there exists a
neighborhood M of O in T such that UlpleM for all weﬁ. Hence, if ¢eﬁ, the

| < %n, 9> |= [ulel(M]| < e so< %n, ¢ >e¢ N_ and f, is continuous. Thus,

n

fneT' for all TMeR.

70




Dfn: If UeL(T) and the %ﬂ’ NeR are as above then we say the family

° s ] .
(fﬂ)ﬂeR of elements in T' determines U. -
Since, for each TeR, @eT, we have Ulg] (M) = < %ﬂ’ P > = f %n(y)¢(y)dy we
-C0

will denote the family (f
“_m T]
and write Ule] (M = [ £(M,y) o(dy or U~ [E(M,¥)].

-0

)TleR by [#(7,v)] and call [¥(7,y)] the matrix of U

Note: T is considered as a parameter while vy is the ''variable of inte-
gration" of the temperate distribution %n.
Examples:

(1) If F is the Fourier transform then F ~z[e_2ﬂlnY].

(2) 1f 1 is the Identity transformation then I ~ [Tné(y)] since, if ¢eT,
4o

then < 7p8, @ >= <8, T_p @ >= [ 8() oy + MWdy = ¢(M = Ll M.

Dfn: Two matrices [¥(N,y)] and [g(7,y)] are said to be equivalent if
they determine the same linear transformation U in L(T).

The two matrices [Tn 6§(y)] and [Tn p_lé] are equivalent since they ﬁoth
determine I. We consider two matrices as being equal if they determine the
same linear transformation in L(T).

Dfn: Let M denote the class of matrices which is associated with some
UeL(T). Then M can be made into an associative algebra over C where if ZeC,
[%(ﬂ,y)] ~U, [gM,y)] ~ V, U, VeL(T), we define

@ [EMm,] + [eMw] = B (M,y] where [& (M,W] ~U +V

(2) [ E(M,v)]

3) [, - [e,y]

[ﬁz(ﬂ,v)] where [ﬁz(ﬂ,v)] ~ ZU

It

[ﬁ3(ﬂ,v)] where [53(ﬂ,v)] ~U o V.

4o
ameiémw)+amw)mww=<%n+%,w>=<%,w>+<%,m>

+x + . .
= [ BNy o(dy + [ 8(M,Y) o(y)dy ve have b (M,y) = £(N,v) + &(M,V)

71




Similarly,

+
[z B etdy = z - [ 20,0 e(v)dy

-0

so we have ﬁz(ﬂ,y) =z « £f(N,y). Furthermore, from the definition of composi-

tion we have

"'030 +®o +wo
J£e.M [ ey odydl = [ ha(e,v) ey)dy ,

so we usually write

Mo () [}
J @M gM,y)dn = hy(o,y) .

Notation: If feT', and [Tn%(y)] is a matrix, we will denote this matrix
by [f(y - M]. Also we will denote the matrix [T_n%(Y)] by [£(0 + v)].

Examples:
(1) Since T6(y =M ~TI and I+ I=2I, I oU=1Uv°1I=U for all UeL(T),

we have

[8¢y - W] + [8¢y - W] = [26¢v - W],

and
La¢y - M1 [EM,v] = TEM,Y) - [6¢y - )] = [£(M, W],

M (<] +mo
(e [ 6N -p) EMyan= [ E,M) 8¢y - Man = £k, -

Since [6(N - v)] = [6(¢y - M)] the same results are obtained if [6(y - M)] is

replaced by [6(T) - y)].
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(2) Since F ~,[e'2“inY], Pl [e2™MY] g po 7l 5l o o I, we have
[e-Zniﬂy] _ [e2niﬂy]-1
and
[e™THY) [&2™Y] L [2MiTYy [=23TV) | (507 - v)]

or

+o . . +oo . .
f e-znlpﬂ e2n1ﬂy dn = f eanpﬂ e—anﬂy dn =

: 85G - v) .
(3) R_, N'[T_né(Y)J = [8(y + ] since if @eT, TeR,

< T_né,@ >= < 6,Tn¢ >= @(-) % R_l[mj(ﬂ) .
@ 0° ~ 1P 6@ ¢y - )] since if get, Ner,
5(9)’

< (-D° 1 >= (DP <6, D1 P > 0@ e .

M 1\

(5) 1If anM then by ~ La(M 8¢y = W] = [a@y) 6¢y - ] = since if @eT,

TieR,
< a(ﬂ)Tné, ¢ >=a(l) <6, T >=a(M) (M = uafwl(ﬂ)
and

< a(Tné), o >= < Tné, ap > =< 8§, T_n(a@) >

= aM oM = p [l (M) .
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Remark: SinceM °D°[¢] (M) = a(m) o® () thenM *D° ~ [ (M (-1)°5 PV ¢y - ]

for if @eT, TeR,
<am0f re® o> (1P am <5, 1P r@® > = am @
Thus,

Lam s¢y - MILED P @y - )T = e 1P ¢y - ]

or

v ©), () )
Ja@) s - o)D) (y - man = a() 1P Py - p) .

(6) If C%eLC(T) then C% ~'[p_1T_nf(Y)] since if ¢eT, TMeR,

SugTpbe >= < B oe>= £ re) = cilal M .

If f is a function then p_lT_nf(y) = f(T) - y) so we denote the matrix of
Cg by [#(N-v)]. Matrices determining convolution transformations will be called

circulant.

o ]
If Cg, CoeLy(T), Cp ~ [£(N - W], Cg ~ [g(M - v)], then Cg Ce=C% wgp

so that

[En - vIeM - ] = [ *gM - v)]

or

+®O []
[ £ - m g - v)dn

Exgp -y .

Furthermore, if C% is invertible, then Ci

Ce where h = F[ i

h F[£]

] so that
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(8) Let LC (T) denote the elements of L(T) which can be written in the
a

H

]
form Ba,f = R, o Cg where CfeLC(T). Then B_ ¢ ~ [p_lT_anf] since if @eT, TeR,

we have

< “-1T-an%’q’ >= < B 9>

R[< Eyrpu 19 2] = R, o calel ()

If £ is a function, then y 1"ra.nf(y) = f(al] - y), so we denote the matrix of

B, $°Lc (T) by [£(an - v)].

(9) Since A_ ¢ o Ab é =
b

a,? % % (‘a|ua§) we have

ab,

[]—:—] B -:};y)][ﬁ FUEENE [Iabl Ex(lalu@- 5 v
or
4
[ 1 o d 1
”LT:_I Be -2 M ﬁ)—[gm - § VN - o Frdelebe -
1 e o 1
= T‘:l- £x (uede -3 V)
Note: 1If f, geLl(R), then
4o +
1 1 1 L 1 1 -1
ij;l_:l £ - 3 ﬂ)l—bl— g(N- Ml = TN :{'m fo -5 M g - an .

Letting ﬁ'= % TN, we have

T 1 1
J IR o] gl - £ v = l “bljf(p - T (@l - ¢ v laldl
- a a -0

1 T = = 1 .=
I_TJ‘ £ - Mg (M - 7 i
b| =
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EN - WIFL =1 - v =06 - )]
FL§)

or

o 101
ff(P'ﬂ)F[ []](T]'Y)dﬂ=5(ﬂ'\()-

Q

FLE

A =1 L .
By writing F and F in its integral notation, we have

4o oo i +<o .
[ ee =m0 [P0V pom2msE ¢ eyaey Lastan = 660 - v) .

o = Co o L 2 ;
(7) Let Aa,f = Cf ° Ra eLC(T). Then Aa,f ~ [ |a| M1/a p_lT_nf(Y)] since
if eT,TeR,
< -1 ) o7 % P > = -l‘-< o T f P >
1/a"*-17-nf -1/a"-nt

|2 |al

< f,Tnp_a¢ > =< f’Tﬂu-lua@ >

< %,Tnp_l(Ra[qﬂ) >= & xR [ (M)

cs o R [@] (M) .

If £ is a function we have

so we usually denote E—l* ul/au_lT_n%(y)] by [—l—~f(ﬂ - % v)]. 1In particular,

|al |a|

Ay g~ [EM+ ).
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1 te 1 - — - 1 1
=) e - F v] - M ueMdn = Wl Ex ek -5 .

|b] <
Hence, we see the integrals agree if £ = f, § = geLl(R).

(10) Let a, beR*, Ba,%’ Bb,éeLCa(T) where f, geOé . Then by using a

previous proposition we have

o
o5
o

I

B o o o Co o o (Co) = o o o
a,f b,g (Ra Cf)(Rb Cg) Ra (Cbe)Cg

1 9 o 1 4 o
=R o (CC—y, ) *g)=B_ (—p f) * gel (.
ab lbl 1/b ab |b, 1/b Cab

Thus,

[F(an - vIE®N - I = [y, . &) *g(abn - )] ,
Ibl 1/b

or

4
[ B@p - M) g0 - yyan = Ti_l (D) * B(abT - ) .

-0

Note: If £, geLl(R) then

oo o ) _ L - _
J £ - g®N - = [ £ - LT g@ - v) —L T where T = b7 . |

|b]
1 4o 1 - —_ —
= -I—TI £( g(abp - M) gM - y)dN |
b| i |
4o - —_ —
= -I—l;_, (ullbf) (abp - M) g(M - y)d7
o _ - —
= T—T (pllbf)(abp -y - gMdn
bl -»
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Hence, this definition of the integral agrees if %, geLl(R).

(11) Let €0 %eoé, and aeR* . Then if eT, TeR,

M’
M, oo B, (Lol = (R, o Clel](M) = a(ME * p(aM) = vlel M) .
Hence, since M~ la (M 6(M - VI, B, % ~ [#(aN - y)] we have

(M (N - YI[EaN - v)]

leMECan - y)]

or

4o

Ja@) 6 - M £@N - v)dn = ap) Fap - )

The transpose of a continuously infinite matrix:

Dfn: For each UeL(T) we define the transpose of U - denoted tU -
to be the map from T' into T' such that for each %eT', tU[%] =fouU (U is
continuous so f o UeT').

Note: For each weT, < tU[%], p>=< %, Uleg] > .

Note: 1If UeL(T) then Y%y is linear for if %, éeT', zeC, and @eT,

< tlE+gl,p>=<F+g, vlg] >=< ¢, ulg] >+ g, Ulgl >

< Yul?], o>+ < [E), o>

and

< fulzf], 9 > = < 2f, Ulg] >= z< £, Ulg] >

z'<tU[%],cp>=<Z' tU[%[,cp>.
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Note: If F is the Fourier transformation in L(T) then for each %eT',
it is easy to see that F[}] = TF[£].

Proposition: If U, VeL(T), then t(U + V) = tU + tV, and t(U o V) =
tv o fu.

Proof: Let feT', @eT, then

< tw+wni€, 9>

< £, + N[g] >=< £, U] >+< £, Vig] >

< tU[f] + tv[f], p >=< (tU + t:V)[f], P>,

and
<tw.wlH, 9>=<¥f ue Vgl >= < (‘ulE], vig] >
- < S[%[HI], 9>=< o SUEH, o> .

Proposition: If IeL(T) is the identity transformation, the £1 is the
identity transformation on T'. If UeL(T) and ﬁ%L(T), then tU is invertible
and (foy~ = ta@lh.

Proof: If @eT, feT', the
t ° o ]
< I[f]’ p>=<f, I[CP] >=< £, ¢>.

Hence tI[%] -t for all feT'.

Using the previous proposition and letting I' be the identity map on T',

we have

tyo t@h = f@t o v = 1=

- t, = t. -1
and similarly t(Ul) o tU = 1'. Hence (Ul) = (U Q.E.D.
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E. The Finite Matrix as a Special Case of the Continuously Infinite

Dfn: Let @ denote the set of 8eT such that 8(0) = 1 and 6(n) = O,

Dfn: For each 6¢®, i, jeZ, define
v3 (e = oo - 1)
i

for all ¢eT, TeR.
Proposition: Vg eL(T) for all 0e¢®, i, jeZ.
: 2.k, (p)
Proof: Let i = 0 and suppose N, = {veT: @ ++vy9) ¥ P (Y)l < g,
p < m} is a neighborhood of 0 in T. Take M_= {YeT: |¥(y)| < 8} where
2.k -1
5= (max{(1 + ) 6P mH7T e,

p<m
YER

then if meMe, it is clear that Vé Le] = cp(j)eeNe so that Vj is continuous

: o jeo
at the origin. But Vg is linear so it is continuous. Ve is continuous for
: o i
any ieZ since Vé = Ti ° Vg where Ti: P TP which is continuous. Q.E.D.

i o
Dfn: For each neN*, 6¢@, let LS(T) denote the subset of L(T) which can

be written in the form:

n 2 2 ]
UeLg(T) = > U = J>=:1(j§1 3, ; vei)
where aijec and Vg is as defined above,
i
Proposition: If i, j, k, leN, 6e®, then
3 L 0 if j#k
Vs, ° Ve, "\
i k |vg if 3=k
i
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Proof: 1If @eT, peR, we have

o Vék[w(v)](p)

i

v loDeq - 91®) = (8 - oG - )
1

{o if j # k (since 6(j - k) = 0)

) ®(1)8(p - i) if j = k (since 8(0) = 1)

0if j # k

vé (el (p) if j = k Q.E.D.
i

Proposition: For each neN, 8¢0, Lg(T) form a subalgebra of L(T).

Furthermore, if

n n 3 n n .
- } j
U= G 2y Y00 Vo m 1T Py %)
and ZeC, then
- j
(1) U1 + U2 = ZZ(aij + bij)Vai
- j
(2) 20) = EE Zag Vg
1
j n
(3) U 2 U, = P i3 Vei where Cij = 21 aikbkj
Proof: (1) and (2) are trivial. Also
n n j n n j
Up o Uy = GZp &1 2345 Vei) ° (Z1 &1 Pyj Vei)

n n n n

L, L 15y 4%

_ ] 1
= 151 581 81 21 4Pk Vei °

0

u

\Y
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o)
I
rt
<
[N

o

<

i

o = 0 if j # k and = vé if j = k so we have
i n i

n n n
1

n
U1 oU,= 2. 2., X a,b Vo, = I

n n
27 171 571 K81 kL e, T 1 RERY

£1631 24k kl)v . Q.E.D.

The following corollary follows immediately from the above proposition.
Corollary: 1If Mn(C) denotes the n x n square matrices with entries in C, the
maps £_,6: Lg ~M_(C) such that for each UeLg(T),

f =
n,0® (3;94,5= 1,n

n

n
- 3 . .
where U = i§ (j§1 aij Ve.) are algebra isomorphisms.

Hence, we can consider the finite matrices as a subset of the continuously
infinite matrices associated with L(T). In a similar fashion we can show
that the n x m matrices can be considered as a subset of the continuously

infinite matrices.
Note: Vg ~ (e - i)(Tjé(y))] = [8(N - 1)6(y - j)] for if @eT, TMeR, we
i
have

<O - DT 6,p >= 80 - 1) < 8,7_p >= 6(T - Do) = V3 el (W .
1

n n
Thus, for each neN, 6e®, matrices of the form 21 2 L @ [8(ﬂ i)8¢y - N
are isomorphic to Mn(C)'
F., Matrices with Function Entries

1. Finite Matrices

Dfn: Let neN* and for each 1 < i, j < n let oij: R - R be a function.
If for each teR, we define S(t) to be the matrix (oij(t))’ we say that S is a
matrix whose entries are the function cij and write g - (cij)
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i Dfn: If S = (oij), T = (Tij) are matrices then we define S + T to be

the matrix (uij) where Uij(t) = Oij(t) + Tij(t) and S * T to be the matrix

=}

(uij) where pij(t) = kgl Oik(t)Tkj(t) for all teR.

B Note: If 6,.: R - R is much that for each teR, 8;5(8) = 0 if i # j and
f ° éij(t) = 1 if i = j then the matrix I = (éij) is the identity matrix, for if

S« 1I-= (pij) then

n
130 = 2y 04 (D8, (0) = 0, (86, (6) = o (B)

for all teR, so § * I = S. Similarly, I - S = S,

Dfn: If S = (oij) in a matrix, then for each teR, we define Vv (t) =
I(cij(t))i where |(0ij(t))l is the determinant of the matrix (oij(t)). We
call the function V the determinant of S.

Dfn: If S = (cij) is a matrix, then we say S is invertible if there
exists a matrix S-l = (Oij) such that S ° S'-1 = S—l - S=1I.

Note: If S = (oij) is invertible and S-1 = (gij) is the inverse of S,
then for each teR, S(t) - S-l(t) = S-l(t) + S(t) = I(t) so we see that S is
invertible if, and only if, S(t) is invertible for all teR. Hence, we know
S is invertible if, and only if, V(t) # O for any teR.

Dfn: If f: R — R is a function, S = @Jij) a matrix, then we define
f * S to be the matrix (pij) where uij(t) = f(t) - oij(t) for all teR.

. Dfn: 1If S = (cij) is a matrix, then for each teR, we define adj(S) (t)

to be the adjoint of the matrix S(t) = (oij(t)). We call the matrix adj(S)

the adjoint of the matrix S. Furthermore, for each teR we define ST(t) to be

the transpose of the matrix (Gij(t)). We call the matrix ST the transpose of S,

. T A A
Note: 1Tt is easy to see that § = (oij) where cij = oji'
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Dfn: If S = (oij) is a matrix, we say S is differentiable if Gij is
differentiable for all 1 < i, j < n and defined dS to be the matrix (G'ij).

We say S is continuously differentiable if O'ij is continuous for all
1<i, j<n.

Proposition: If S = (0o,,) is differentiable (respectively continuously

i
differentiable) then the determinantV is differentiable (respectively continu-
ously differentiable).

Proof: Immediate since V can be written as sums, differences, and
products of the PP

Proposition: If S = (cij) is a differentiable (respectively continuously
differentiable) matrix then ST and adj(S) are differentiable (respectively
continuously differentiable),

Proof: ST is clearly differentiable (respectively continuously differ-

entiable) and since entry is the adj(S) in a sum, difference, and product of

the entries of S, it is clearly differentiable (respectively continuously
differentiable).

Proposition: 1If S = (oij) is invertible, then S-1 = %(adj . (S))T.

Proof: Immediate, since S-l(t) = %(t)(adj (S(t)))T for all teR.

Proposition: If f: R — R is differentiable (respectively continuously
differentiable) and S = (cij) is a differentiable(respectively continuously
differentiable) matrix then £ * S is a differentiable (respectively continu-
ously differentiable) matrix.

Proof: trivial. .

Proposition: If S = (cij) is differentiable (respectively continuously
differentiable) and S.1 exists, then S-1 is differentiable (respectively

continuously differentiable),
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Proof: We know ¥V is differentiable (respectively continuously differ-
entiable) and since S_l exists, V(t) # 0 for every teR so % is also. By
the three previous propositions we have S-1 = -Yl]'(adj(S))T is differentiable
(respectively continuously differentiable). Q.E.D.

Dfn: 1If S = (cij) is a differentiable matrix and S is invertible, then
we define the right Volterra derivative of S to be the matrix S-ldS and de-
note it by DS.

Note: From the previous proposition we have dS-1 exists and hence,
ps™! = sas™l,

Proposition: If S = (cij) and T = (Tij) are differentiable matrices,
then S * T is differentiable and d(S * T) = (dS) - T+ S * (4T).

Proof: S - T = (uij) where

n

Hi5 = 1 TikTkg

Hence pij is differentiable so § * T is differentiable and

y X ' =) @l . 7)) = Voot o 4+ ol
Mij (; oik'kj) %. Yik'kj * Ok ki’ % ik 'kj L ik kj
But cl 1y if = T‘o' T and p., = Y—‘cr v'!', then (dS) * T = (u,.) and
ut clearly 1L iy = L ik kj ij = L %in"kj ij
k k

S * (aT) = (pij). Hence d(S » T) = (dS) * T+ S * (dT). Q.E.D.

tl

Corollary: If C (Cij) is a matrix of constant functions, then C is

differentiable and dC 0. Furthermore, if S is differentiable, d(C * S) =

]

c - ds.

Proof: Trivial.
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Note: If S is a differentiable matrix where dS = 0, then it is easy
to see that S is a constant matrix.
THEOREM: Let S = (oij) and T = (Tij) be two differentiable and invertible
matrices., Then a necessary and sufficient condition for DS = DT is that there

exists an invertible constant matrix C such that S = CT.

Proof: Suppose S = CT where C is constant and invertible. Then DS =

D(CT) = (CT)-ld(CT) = (T-lC-l)CdT = T-ldT = DT. Hence the condition is

sufficient.

1 1 1

Conversely, suppose that DS = DT. Then S dS - T dT = O and S dS +

d(T-l)T = 0, since d(T-l) exists for all TeR. Multiplying on the left by §

L Sd(T_l) = 0 or d(sr'l) 0. st l-c

and on the right by T-1 gives (dS)T
where C is a constant invertible matrix, since both S and T-1 are invertible.

L S-ClorT=cls.

2. Infinite Matrices

Dfn: Let (y, ) be a family of elements in T. Then we say lim ¢ _= ¢ if
t” teR gt ©
for any neighborhood N of zero in T, there exists a § > 0 such that

t-t | <56
o

implies P - yeN. If ¢ = @to then we say the family (cpt)teR is continuous at to.

If (@t) is continuous for all to in R, we simply say the family is continuous.

teR

Dfn: Let (U))

) teR be a family of linear maps in L(T). We say the family

is continuous in t if for each t_eR, ¢eT, lim Ut[¢] = U, [¢]. We say this
t—-t o
)
family is strongly continuous if for each toeR, and any neighborhood N of zero

in T, there exists a § > 0 and a neighborhood M of zero in T such that for all

teR, |t - tol < 6 and all @eM, we have Ut[qﬂ - Ut LeleN.
o
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If :ft(ﬂ,y)] m'Ut for all teR then we say [%t(ﬂ,y)] is continuous (strongly

continuous) if (Ut) is continuous (strongly continuous).

teR

Dfn: We say the family (Ut) is differentiable if there is a family (Vt)

in L(T) such that for each toeR, peT,

1im Cel®d - Uto[cP]) = Vto[cp] .
t~t
) t -t
[0}

(Vt) is called the derivative of (Ut) and denoted (U't).
If [%t(ﬂ,y)] A»Ut for all teR then we say this family of matrices is

differentiable if (Ut) is differentiable and denote its derivative by

|OJ

£ my].
atc

Note: It is easy to see that if %z [%t(ﬂ,y)] exists then the function

te,
t = ] £ Mooy

-0

from R into C is differentiable for all TeR, @¢T and its derivative is the

function

4o
e~ 5 B @metmay .

Proposition: %E [%t(ﬂ,y)] = 0 if, and only if, [%t(ﬂ,y)] is constant in t.

Proof: It is clearly true that if [%t(ﬂ,y)] is constant in t then

9 o
a [ft(n,Y)] = 0.
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Conversely, if o [%t(ﬂ,y)] = 0 then by the note above the function

ot

+C°°
e = [ £ .(My)ely)dy

is constant and hence %t(ﬂ,y) = %s(ﬂ,y) for all s, teR = > [%t(ﬂ:Y)] is
constant. Q.E.D.
THEOREM: If [%t(ﬂ,y)] and [ét(ﬂ,y)] are differentiable and [%t(ﬂ,y)] is

strongly continuous, then [%t(ﬂ,y)] y [§t(n,y)] is differentiable and

(5] - (3, D) = & B lle, ] + [E,M0] S5 e, Mv)]

Proof: Let t eR and eT. Then if (U,) ~'[%t(ﬂ,y)] and (V) ~J[§t(ﬂ,y)]

then
U, o Vt[cp] U eV L] Ut[Vt[cp]:] - U, [vt [cp]}
t -t t -t
(o] (o]
0Vl - v Do)+ v, Ll ] - v Lvg Ll ] = ufv el - v ],
t - to ’ t - to

Ut[vt [(p]] - U [Vt LQP]]

t -t
o
But Ut is strongly continuous and since
vlel - v, o) 5[V, tel] - v, [v, [6]]
o o__© - 9]
- v!'le] , —'U'[V [_cp]_Jast—'t .
t t t o
t - tO o t - tO o~ ©
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we have (Ut Vt)‘ = Ut o VE + Ué o Vi and hence the same result corresponding
o o

to the matrices. Q.E.D.

Note: It is easy to see that

& (e, 1 + Lo, 1) = H e aw [+ H e un ]

Examples:

(1) If h(t) is differentiable for all teR and [£(7,y)] is a matrix, the

family [h(t) - £(0,v)] is differentiable and

Mo - tw =@ - o]

(2) For each teR, let ;(y,t) be a temperate distribution. Then if

‘%’ y(y,t) exists and [J(y - N,t)], [ Y(Y N,t)] are matrices then
%— [¥¢yv - M,0)] = [ y(y N,t)] for if ¢eT, t,t_eR,
N i
f (M - v,t) ply)dy - J y(M - v, t) e(v)dy e
= e B RRARRIOLY
o]
+ . y(M - y,t) - ¥ - y,t)
f/ R ° gtY(ﬂ Y,t)>ﬁp(v)dy—'06\st—*t
-0 o

Dfn: Let [%t(ﬂ,y)] be a differentiable family of invertible matrices. Then

we define

N S N
p [t mw | = [E.aw 7 &y -

89



THEOREM: If [%t(n,y)J, [gt(n,y)J are differentiable families of invertible
matrices where both [%t(ﬂ,y)]-l and [gt(ﬂ,y)]-l are differentiable, then

exists an invertible matrix [R(7,Yy)] such that
[E, ] = TR, - (g (M)
if and only if
D [E (M,v] = D (8 (My)]

Proof: If [E (M) = [A(M,M] -+ [g (M,1)] , then
b [E,»] = 2 a1 Sl = (i, @)t LRmmIe, M)
= L&, M1t TRMITT TR,V (8, (,0)]
= (&, 17 S (&, (M)
= o le (NI .
Conversely, suppose Dt[%t(n,y)] = Dt[ét(n,y)]. Then since
(£, MIE,MwITH = [om - ],

SR ] - [ I+ ] SE ™= o

and we have

Q)

o - o - o ] -1
Sl a1 D= ka1t &t and) kan .
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Thus, since

we have by multiplying by [%t(ﬂ,y)]-l

or

or

Hence

for all

teR.

R CAIIDEIE

° 13 - 0 -
(B 1™ St a0l = 8,1t &

Q.E.D.

that

mEMURYY

> - Lo T &R DR aan T

e[t aw ]t -

&t -0

o -1
e, MWILE MIT =
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